Deep Convolutional Neural Network Inference with Floating-point Weights and Fixed-point Activations

نویسندگان

  • Liangzhen Lai
  • Naveen Suda
  • Vikas Chandra
چکیده

Deep convolutional neural network (CNN) inference requires significant amount of memory and computation, which limits its deployment on embedded devices. To alleviate these problems to some extent, prior research utilize low precision fixed-point numbers to represent the CNN weights and activations. However, the minimum required data precision of fixed-point weights varies across different networks and also across different layers of the same network. In this work, we propose using floating-point numbers for representing the weights and fixed-point numbers for representing the activations. We show that using floating-point representation for weights is more efficient than fixed-point representation for the same bit-width and demonstrate it on popular large-scale CNNs such as AlexNet, SqueezeNet, GoogLeNet and VGG16. We also show that such a representation scheme enables compact hardware multiply-andaccumulate (MAC) unit design. Experimental results show that the proposed scheme reduces the weight storage by up to 36% and power consumption of the hardware multiplier by up to 50%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Networks with Reduced Numerical Precision Weights and Activation

Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memo...

متن کامل

TernaryNet: Faster Deep Model Inference without GPUs for Medical 3D Segmentation using Sparse and Binary Convolutions

Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image guided interventi...

متن کامل

Convolutional Neural Networks using Logarithmic Data Representation

Recent advances in convolutional neural networks have considered model complexity and hardware efficiency to enable deployment onto embedded systems and mobile devices. For example, it is now well-known that the arithmetic operations of deep networks can be encoded down to 8-bit fixed-point without significant deterioration in performance. However, further reduction in precision down to as low ...

متن کامل

Rethinking Numerical Representations for Deep Neural Networks

With ever-increasing computational demand for deep learning, it is critical to investigate the implications of the numeric representation and precision of DNN model weights and activations on computational efficiency. In this work, we explore unconventional narrow-precision floating-point representations as it relates to inference accuracy and efficiency to steer the improved design of future D...

متن کامل

Low-Precision Batch-Normalized Activations

Artificial neural networks can be trained with relatively low-precision floating-point and fixed-point arithmetic, using between one and 16 bits. Previous works have focused on relatively wide-but-shallow, feed-forward networks. We introduce a quantization scheme that is compatible with training very deep neural networks. Quantizing the network activations in the middle of each batch-normalizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.03073  شماره 

صفحات  -

تاریخ انتشار 2017